Aromatic Rearrangements in the Benzene Series. Part 6. ${ }^{1}$ The Fries Rearrangement of Phenyl Benzoate: The Role of Tetrabromoaluminate Ion as an Aluminium Bromide Transfer Agent

Julia L. Gibson and Lionel S. Hart *
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1 TS, UK

Abstract

The ester $\mathrm{PhC}^{17} \mathrm{O}^{17} \mathrm{OPh}$ was prepared, and its ${ }^{17} \mathrm{O}$ NMR spectra in PhCl were recorded alone, in the presence of AlBr_{3} and in the presence of $\mathrm{AlBr}_{3}+\mathrm{AlBr}_{4}{ }^{-}$. Under similar conditions, ${ }^{13} \mathrm{C}$ NMR spectra of unlabelled $\mathrm{PhCO}_{2} \mathrm{Ph}$ were recorded, as were FTIR spectra of $\mathrm{PhCO}_{2} \mathrm{Ph}$ and benzoates of three 2,6disubstituted phenols. The spectra show clearly that formation of the carbonyl-oxygen-coordinated complex $\mathrm{PhC}(\mathrm{OPh})=\stackrel{+}{\mathrm{O}}-\overline{\mathrm{A}} \mathrm{BBr}_{3}$ from $\mathrm{PhCO}_{2} \mathrm{Ph}$ and AlBr_{3} is partially reversed in the presence of AlBr_{4}^{-} (presumably by capture of AlBr_{3} to give $\mathrm{Al}_{2} \mathrm{Br}_{7}^{-}$), with no detectable formation of any new intermediate. As this cannot increase the rate of rearrangement of $\mathrm{PhCO}_{2} \mathrm{Ph}$ by AlBr_{3}, which is the experimentally observed consequence of the addition of AlBr_{4}^{-}to the $1: 1$ rearrangement reaction $\left(1 \mathrm{AlBr}_{3}: 1 \mathrm{PhCO}_{2} \mathrm{Ph}^{2}\right.$ in homogeneous solution in PhCl), the $\mathrm{AlBr}_{4}{ }^{-}$must play an additional role. It is suggested that the AlBr_{4}^{-} effectively transfers AlBr_{3} from the carbonyl oxygen of the catalyst-ester complex (above) to the phenoxy oxygen, via a process involving a cyclic transition state, simultaneously resulting in fragmentation of the complex to give the ion-pair ($\mathrm{PhC} \stackrel{+}{0} \cdot \mathrm{PhO}_{\mathrm{A}}^{\mathrm{A}} / \mathrm{Br}_{3}$), previously invoked as the intermediate involved in the second-stage reaction of the two-stage 1:1 rearrangement reaction (above).

In our investigations ${ }^{2,3}$ of the mechanism of the Fries rearrangement of phenyl benzoate under the influence of anhydrous aluminium bromide in homogeneous solution in chlorobenzene, the most informative reactions are those involving one molar proportion each of AlBr_{3} and ester (the 1:1 rearrangement), and one molar proportion each of AlBr_{3}, PhCOBr and PhOH (the 1:1:1 acylation), the latter reaction proceeding to $>90 \%$ via the first-formed ester. We have shown ${ }^{2,3}$ that the $1: 1$ rearrangement is a two-stage process, involving an intermolecular ${ }^{3}$ first-stage reaction giving solely 2-hydroxybenzophenone via a cyclic transition state, and a faster, pseudo-intramolecular ${ }^{2,3}$ second-stage reaction, involving ${ }^{3}$ an ion-pair intermediate ($\mathrm{PhC} \stackrel{+}{+} \cdot \mathrm{PhOA}^{-} / \mathrm{Br}_{3}$), giving 2 - and 4-hydroxybenzophenone in constant ratio. This secondstage reaction of the $1: 1$ rearrangement is identical with the (principal process of the) $1: 1: 1$ acylation. ${ }^{1}$ Recently, we showed ${ }^{1}$ that $\mathrm{AlBr}_{4}^{-}\left(\equiv \mathrm{Br}^{-}\right)$has a profound effect on the $1: 1$ rearrangement. Deliberate addition of $\mathrm{Bu}_{4} \stackrel{+}{\mathrm{N}} \mathrm{AlBr}_{4}^{-}$to a $1: 1$ rearrangement made it behave [as shown by the variation with time of the ortho: para ($o: p$) ratio of the hydroxybenzophenones] more like a $1: 1: 1$ acylation, to an extent depending on the amount of $\mathrm{AlBr}_{4}{ }^{-}$added. ${ }^{27} \mathrm{Al}$ NMR spectroscopy showed ${ }^{1}$ that no AlBr_{4}^{-}could be detected at the start of the $1: 1$ rearrangement, but that $c a .0 .8 \%$ of the AlBr_{3} was present as $\mathrm{AlBr}_{4}{ }^{-}$at the beginning of the $1: 1: 1$ acylation (by virtue of the HBr formed in the initial reaction between PhCOBr and $\mathrm{PhOH})$. This was sufficient to cause the striking difference between the two processes, most readily observed when the $o: p$ ratio of the products of either reaction is plotted against time. ${ }^{2}$ $\mathrm{AlBr}_{4}{ }^{-}$is generated in the course of the first-stage reaction of the $1: 1$ rearrangement, and then acts as a 'trigger' which brings into operation the second-stage reaction. Kinetic studies showed ${ }^{1}$ that the rearranging entity is ($\mathrm{PhCO}_{2} \mathrm{Ph} \cdot \mathrm{AlBr}_{3}$), and, from a series of reactions to which AlBr_{4}^{-}was deliberately added, that the second-stage reaction involves some complex of the rearranging entity (above) and AlBr_{4}^{-}ion. (The reaction displays Michaelis-Menten type kinetic behaviour.) Finally, we confirmed ${ }^{1}$ the above effect of $\mathrm{AlBr}_{4}^{-}\left(\equiv \mathrm{Br}^{-}\right)$by studying
acylation reactions in which PhCOBr reacted with $\mathrm{PhO}^{-} \mathrm{Na}^{+}$ rather than with PhOH , and showed conclusively that H^{+}had no effect on the reaction (e.g. as a co-catalyst with AlBr_{3}). Thus, Br^{-}(as AlBr_{4}^{-}), produced during the $1: 1$ rearrangement, or present from the start of the $1: 1: 1$ acylation, dictates the behaviour of the reaction.

The actual role of the AlBr_{4}^{-}remained to be identified. It was suggested ${ }^{1}$ that this ion might in some way assist AlBr_{3} coordinated to the carbonyl oxygen of the ester to move to the phenoxy oxygen, since $\mathrm{Ph}-\mathrm{CO}-\stackrel{+}{\mathrm{O}}(\mathrm{Ph})-\overline{\mathrm{A}} \mathrm{BBr}_{3}$ can readily dissociate to the ion-pair needed for the second-stage reaction (above) of the 1:1 rearrangement, whilst it is difficult to see how the complex $\mathrm{PhC}(\mathrm{OPh}) \stackrel{+}{+}-{ }^{-}-\mathrm{A} 1 \mathrm{Br}_{3}$ could give this ion-pair. (In the extensive literature of the Fries rearrangement, there is no experimentally based information about the location of the Lewis acid catalyst in the actual rearrangement step. Various authors assume, without any supporting evidence, that it is located on the phenoxy oxygen. All that has been established is that the Lewis acid catalyst, initially at least, coordinates to the carbonyl oxygen-see below).

In an attempt to gain information about the site of the AlBr_{3} molecule during the rearrangement, we prepared $\mathrm{PhC}^{17} \mathrm{O}$ ${ }^{17} \mathrm{OPh}$, and examined its ${ }^{17} \mathrm{O}$ NMR spectra in solution in PhCl : alone, in the presence of AlBr_{3}, and in the presence of $\mathrm{AlBr}_{3}+$ $\mathrm{AlBr}_{4}{ }^{-}$. We also recorded ${ }^{13} \mathrm{C}$ NMR and FTIR spectra of unlabelled phenyl benzoate in PhCl solution: alone, and under the same conditions as for the labelled ester. The benzoates 1-3 of hindered phenols were also prepared, and their FTIR spectra recorded under the same conditions as above. The effects noted when $\mathrm{R}=\mathrm{H}$ (i.e. for $\mathrm{PhCO}_{2} \mathrm{Ph}$ itself) were greatly magnified when R was a bulky substituent.

Table 1 Frequencies $/ \mathrm{cm}^{-1}$ of $\mathrm{C}=\mathrm{O}$ absorptions in the esters and catalyst-ester complexes

Absorption	$\mathrm{PhCO}_{2} \mathrm{Ph}$	DMPB a	DIPPB b	DCPB $^{\text {c }}$
$\mathrm{C}=\mathrm{O}$	1738	1740	1738	1753
$\mathrm{C}=\mathrm{O}+\mathrm{AlBr}_{3}$	1622	1620	1621	1629

${ }^{a}$ 2,6-Dimethylphenyl benzoate 1. ${ }^{b}$ 2,6-Diisopropylphenyl benzoate 2 . c 2,6-Dichlorophenyl benzoate 3 .

Table 2 Ratios of intensities of free and complexed carbonyl absorptions of phenyl benzoate and of benzoates of 2,6 -disubstituted phenols

Reaction conditions	$\mathrm{PhCO}_{2} \mathrm{Ph}$ Intensity ratio	DMPB^{b} Intensity ratio	DIPPB b Intensity ratio	DCPB b Intensity ratio
A	0.84	0.30	0.50	0.57
B	0.96	0.47	1.04	0.97

${ }^{a} \mathrm{~A}: \mathrm{AlBr}_{3}+$ ester (1:1) in $\mathrm{PhCl} . \mathrm{B}: \mathrm{AlBr}_{3}+$ ester $+\mathrm{AlBr}_{4}{ }^{-}(1: 1: 0.2$, respectively) in PhCl , except for $\mathrm{PhCO}_{2} \mathrm{Ph}$ itself, for which $\mathrm{A}=$ $\mathrm{AlBr}_{3}+$ ester (1:2) in PhCl , and $\mathrm{B}=\mathrm{AlBr}_{3}+$ ester $+\mathrm{AlBr}_{4}{ }^{-}$(1:2:1, respectively) in $\mathrm{PhCl} .{ }^{6}$ Abbreviations as in Table 1.

Table $3{ }^{17} \mathrm{O}$ NMR chemical shifts/ppm of the carbonyl oxygen and phenoxy oxygen in $\mathrm{PhC}^{17} \mathrm{O}^{17} \mathrm{OPh}$

Sample (in PhCl solution)	$\delta^{17} \mathrm{O}^{a}$		Comments
	$\bigcirc{ }_{C}^{17} 0$		
$\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph}$	350	188	(1)
$\mathrm{AlBr}_{3}+\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph}(1: 1)$	228 (sh)	210	(2)
$\begin{aligned} & \mathrm{AlBr}_{3}+\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph}+\mathrm{AlBr}_{4}^{-} \\ & \quad(1: 1: 0.2, \text { respectively }) \end{aligned}$	- 239 (sh)	209	(2)

${ }^{a}$ All δ_{0} values were measured relative to $\mathrm{D}_{2}{ }^{17} \mathrm{O}, \delta_{0}=0.0$. Note: $\mathrm{PhCO}_{2} \mathrm{Ph} \mathrm{C}=\mathrm{O}, \delta^{17} \mathrm{O}=334 \mathrm{ppm} ;{ }^{4} \mathrm{C}-\mathrm{O} \delta^{17} \mathrm{O}=193 \mathrm{ppm},{ }^{4}$ (both in CDCl_{3} solution). (sh) $=$ shoulder. The two oxygen signals overlap one another, but the chemical shift of the shoulder can be abstracted.

Table $4{ }^{13} \mathrm{C}$ NMR chemical shifts/ppm of the carbonyl carbon and phenoxy carbon in phenyl benzoate

Sample (in PhCl solution)	$\delta^{13} \mathrm{C} / \mathrm{ppm}{ }^{\text {a }}$	
	$y=0$	- ${ }^{\text {c-O- }}$
$\mathrm{PhCO}_{2} \mathrm{Ph}$	34.9	21.6
$\mathrm{AlBr}_{3}+\mathrm{PhCO}_{2} \mathrm{Ph}(1: 1)$	42.2	20.2
$\mathrm{AlBr}_{3}+\mathrm{PhCO}_{2} \mathrm{Ph}+\mathrm{AlBr}_{4}$ ($1: 1: 0.2$, respectively)	41.5	20.4

${ }^{a}$ All δ_{C} values were measured relative to the meta-carbon of PhCl ($\delta_{\mathrm{C}} 129.8$)-see Experimental.

Results and Discussion

FTIR Spectra.-Spectra of solutions in PhCl of $\left(\mathrm{AlBr}_{3}+\right.$ $\left.\mathrm{PhCO}_{2} \mathrm{Ph}\right)$ and $\left(\mathrm{AlBr}_{3}+\mathrm{PhCO}_{2} \mathrm{Ph}+\mathrm{AlBr}_{4}^{-}\right)$showed that when $\mathrm{AlBr}_{4}{ }^{-}$was present, the intensities of absorptions of the free ester (1738 and $1265 \mathrm{~cm}^{-1}$) increased a little relative to those of the catalyst-ester complex (1622,1359 and $1314 \mathrm{~cm}^{-1}$), but that there was no evidence for formation of any new species. In this particular case (see footnotes to Table 2), we used a $1: 2$ molar ratio of $\mathrm{AlBr}_{3}: \mathrm{PhCO}_{2} \mathrm{Ph}$, respectively, and $1: 2: 1$ molar proportions of $\mathrm{AlBr}_{3}: \mathrm{PhCO}_{2} \mathrm{Ph}: \mathrm{AlBr}_{4}{ }^{-}$, respectively. Changes
in the $\mathrm{C}=\mathrm{O}$ stretching frequency in the presence of AlBr_{3} are easily identified, unlike those associated with $\mathrm{C}-\mathrm{O}$ absorptions, which were harder to assign. (A full discussion of attempts to make the latter assignments is given in ref. 5). By using an excess of the ester over the Lewis acid, we had hoped to have the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{O}$ absorptions of both free and complexed ester represented at reasonable intensities in the same spectrum, and use of a molar equivalent of AlBr_{4}^{-}relative to the catalyst-ester complex should magnify the effect of the anion, making it more readily discernible. In the event, only the $\mathrm{C}=\mathbf{O}$ absorptions were informative, so that all other FTIR measurements were made using the same ratios of reagents as for the NMR measurements (see below).
For the 2,6-disubstituted phenyl benzoates, spectra were recorded of solutions in PhCl of the esters themselves, of $\left(\mathrm{AlBr}_{3}+\right.$ ester $)(1: 1)$, and of $\left(\mathrm{AlBr}_{3}+\right.$ ester $\left.+\mathrm{AlBr}_{4}{ }^{-}\right)$ ($1: 1: 0.2$, respectively). For all these esters, coordination of the AlBr_{3} to the carbonyl oxygen was less complete than with $\mathrm{PhCO}_{2} \mathrm{Ph}$ itself, as expected because of steric hindrance. When AlBr_{4}^{-}was added to the $\left(\mathrm{AlBr}_{3}+\right.$ ester $)$ solution, the effect was as before: the $\mathrm{C}=\mathrm{O}$ absorption of the free ester increased relative to the $\mathrm{C}=\mathrm{O}$ absorption of the catalyst-ester complex. The change was more noticeable for 2 and $\mathbf{3}$ than for $\mathbf{1}$. Thus, the behaviour of the 2,6 -disubstituted phenyl esters corroborates and magnifies the effect found in the case of phenyl benzoate itself.
If the $\mathrm{AlBr}_{4}{ }^{-}$reacted with the catalyst-ester complex to give a new species [e.g. the ion-pair ($\mathrm{PhC}{ }^{+} \cdot \mathrm{PhOA}^{-} 1 \mathrm{Br}_{3}$)] this would lead to new absorptions in the spectrum, and also to conversion of the free ester to catalyst-ester complex, to maintain the equilibrium between the free and complexed ester. The ratio of the intensities of the $\mathrm{C}=\mathrm{O}$ absorptions due to the free and complexed ester would thus remain constant. Neither of these consequences is observed (see above and Table 2). In contrast, if the AlBr_{4}^{-}converted the catalyst-ester complex back to free ester, disturbing the equilibrium between free and complexed ester, then the ratio of the intensities of the $\mathrm{C}=\mathrm{O}$ absorptions due to free and complexed ester would increase. This is observed (see Table 2). The increase in the $\mathrm{C}=\mathrm{O}$ absorption of the free ester relative to that of the complexed ester can readily be seen merely by inspection of the spectra. We tried to quantify the change as follows. There is a considerable error involved in integrating the areas under some of the absorption maxima because of uncertainty in the position of the baseline, caused by subtraction of the solvent absorption. Since all solutions were of the same concentration in the ester, and those for each ester were run consecutively under the same conditions, peak heights (which can be measured with greater precision) were used instead. Table 2 shows the ratios of the intensities of the $\mathrm{C}=\mathrm{O}$ absorptions in the free ester and catalystester complex, in the absence and presence of $\mathrm{AlBr}_{4}{ }^{-}$. In every case, addition of $\mathrm{AlBr}_{4}{ }^{-}$causes an increase in the ratio, i.e. the amount of free ester has increased relative to the amount of catalyst-ester complex (the AlBr_{3} presumably being converted to $\mathrm{Al}_{2} \mathrm{Br}_{7}^{-}$). The effect of the AlBr_{4}^{-}is magnified in the $2,6-$ disubstituted phenyl esters. The same result has also been observed in the case of phenyl esters of 2,4,6-trisubstituted benzoic acids, ${ }^{6}$ giving additional confirmation of the effect of AlBr_{4}^{-}.
${ }^{17} \mathrm{O}$ NMR Spectra.-Spectra were recorded of solutions in PhCl of $\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph},\left(\mathrm{AlBr}_{3}+\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph}\right)(1: 1)$, and $\left(\mathrm{AlBr}_{3}+\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph}+\mathrm{AlBr}_{4}^{-}\right)(1: 1: 0.2$, respectively). The results are shown in Table 3. When a molar proportion of AlBr_{3} was added to the ester, the carbonyl oxygen signal showed a large upfield shift (from 350 to 228 ppm), and the phenoxy oxygen showed a smaller downfield shift (from 188 to 210 ppm), so that in the spectrum of the catalyst-ester
complex, the two signals overlapped. When $\mathrm{AlBr}_{4}{ }^{-}$(0.2 molar proportion) was added, the carbonyl oxygen signal moved back downfield (from 228 to 239 ppm), and the phenoxy oxygen signal moved back upfield (from 210 to 209 ppm). The change for the carbonyl oxygen signal was the greater, reflecting the differences in the sizes of the changes observed when the AlBr_{3} initially complexed with the ester. Given the time-averaged nature of NMR spectra, the effect of $\mathrm{AlBr}_{4}{ }^{-}$seems to be either (a) to promote conversion of the catalyst-ester complex to some new species which contains oxygen atoms in very similar environments to those in the catalyst-ester complex (since they have chemical shifts very similar to those in the latter) or (b) to promote partial conversion of the catalyst-ester complex into some new species which is in rapid dynamic equilibrium with the catalyst-ester complex, and contains oxygens in very different environments from those in the latter species, i.e. a 'carbonyl' oxygen resonating at lower field, and a 'phenoxy' oxygen resonating at higher field. Taking into account the FTIR evidence above, (a) seems unlikely, since the IR spectra showed no new $\mathrm{C}=\mathrm{O}$ or $\mathrm{C}-\mathrm{O}$ absorptions close to the absorptions of the catalyst-ester complex. Similarly, (b) also seems unlikely, except in the special case where the 'new' species of very different nature from the catalyst-ester complex is simply the ester itself. The IR evidence rules out formation of the ion-pair (see above).
${ }^{13} \mathrm{C}$ NMR Spectra.-Spectra were recorded ${ }^{7}$ of solutions in PhCl of $\mathrm{PhCO}_{2} \mathrm{Ph},\left(\mathrm{AlBr}_{3}+\mathrm{PhCO}_{2} \mathrm{Ph}\right)(1: 1)$, and $\left(\mathrm{AlBr}_{3}+\right.$ $\mathrm{PhCO}_{2} \mathrm{Ph}+\mathrm{AlBr}_{4}^{-}$) ($1: 1: 0.2$, respectively). The chemical shifts of the carbonyl carbon and the ring carbon of the $\mathrm{C}-\mathrm{O}$ bond are shown in Table 4.
${ }^{17}$ Oxygen chemical shifts have been interpreted ${ }^{8}$ in terms of variation in the degree of π-bonding and/or the polarisation of carbon-oxygen bonds, where sp^{3} - and sp^{2}-hybridised oxygen is involved. It is reasonable to expect that the other nucleus of the bond, carbon, will experience some alteration in its local electron density, and hence its chemical shift, too, will change as $\delta^{17} \mathrm{O}$ changes. De Jeu ${ }^{9 a}$ and Delseth and Kintzinger ${ }^{9 b}$ found fairly good correlations between $\delta^{13} \mathrm{C}$ and $\delta^{17} \mathrm{O}$ of the carbonyl group in a series of aldehydes and ketones, the correlation being greatest when the series of alkyl groups attached to the carbonyl groups were of similar nature. (There were some significant variations).

Consider structure 4, with the atoms labelled as shown.

4

Figs. 1 show plots of chemical shifts for the pairs of atoms 1 and 2,1 and 3,1 and 4,2 and 3,2 and 4 , and 3 and 4 . Each is a straight line. As noted by earlier workers, ${ }^{9 a, b ; 10}$ changes in $\delta^{13} \mathrm{C}$ are small compared with those in $\delta^{17} \mathrm{O}$. This may be partly due to the much greater chemical shift range for oxygen compared with that for carbon ($\sim 1500 \mathrm{ppm} v \mathrm{~s} . \sim 650 \mathrm{ppm}$). It probably also indicates that canonical forms 5 and 7 contribute much more than form 6 to the structure of the catalyst-ester complex, 7 being an example of the so-called compensating conjugative effect ${ }^{10}$ that a π-donor (OPh here) has on the carbonyl carbon, resulting in only small changes in that carbon's chemical shift.

The significance of Figs. 1(a-f) lies in the information they

provide about the role of the $\mathrm{AlBr}_{4}{ }^{-}$ion. FTIR spectroscopy showed ${ }^{1}$ that in a solution of $\mathrm{PhCO}_{2} \mathrm{Ph}+\mathrm{AlBr}_{3}(1: 1)$ in PhCl at $25^{\circ} \mathrm{C}$, at least 99% of the ester is present as the catalyst-ester complex ($\mathrm{PhCO}_{2} \mathrm{Ph} \cdot \mathrm{AlBr}_{3}$). If for convenience this figure is assumed to be 100%, then the points at the appropriate ends of the lines in the graphs represent $100 \% \mathrm{PhCO}_{2} \mathrm{Ph}$ and 100% $\left(\mathrm{PhCO}_{2} \mathrm{Ph} \cdot \mathrm{AlBr}_{3}\right)$. Any points along the lines represent a mixture of free and complexed ester, and the position of such a point on the line is determined by the relative amounts of each of these compounds. Since, in all cases, the third point [i.e. for $\left(\mathrm{AlBr}_{3}+\mathrm{PhCO}_{2} \mathrm{Ph}+\mathrm{AlBr}_{4}{ }^{-}, 1: 1: 0.2\right.$, respectively $)$] lies on the line between 100% free $\mathrm{PhCO}_{2} \mathrm{Ph}$ and $100 \% \mathrm{PhCO}_{2} \mathrm{Ph}$ AlBr_{3} (within experimental error), this is strong evidence that AlBr_{4}^{-}causes conversion of the catalyst-ester complex back to free ester. [If, rather than liberating free ester, the $\mathrm{AlBr}_{4}{ }^{-}$were influencing production of a new species, it would be extremely unlikely that in every case the point for the solution containing $\left(\mathrm{AlBr}_{3}+\mathrm{PhCO}_{2} \mathrm{Ph}+\mathrm{AlBr}_{4}^{-}\right)$would lie on the lines in Figs. $1(a-f)$, since this would require the new species to have exactly the same ratios of chemical shifts for all the pairs of atoms under consideration, as are found in $\mathrm{PhCO}_{2} \mathrm{Ph}$ itself]. Calculation shows that the effect of the 0.2 molar proportion of $\mathrm{AlBr}_{4}{ }^{-}$is to produce $(10 \pm 2.4) \%$ of free ester [the average of the six values obtainable from Figs. $1(a-f)$]. This suggests that 0.2 mol of $\mathrm{AlBr}_{4}{ }^{-}$generates $c a .10 \%$ ($c a .0 .1$ molar equivalent) of free ester from 1 mol of $\mathrm{PhCO}_{2} \mathrm{Ph} \cdot \mathrm{AlBr}_{3}$ at $25^{\circ} \mathrm{C}$.

Thus, all the evidence from FTIR and ${ }^{13} \mathrm{C}$ and ${ }^{17} \mathrm{O}$ NMR spectroscopy cited above indicates that addition of $\mathrm{AlBr}_{4}{ }^{-}$to a system containing $\mathrm{PhCO}_{2} \mathrm{Ph}$ and AlBr_{3} causes the equilibrium (1) to move to the left and the question ${ }^{3}$ of the role of $\mathrm{AlBr}_{4}{ }^{-}$in promoting the second-stage reaction of the $1: 1$ rearrangement still remains. An increase in the amount of the free ester cannot assist the second-stage reaction: it would more reasonably be expected to promote the first-stage reaction, which requires attack of free $\mathrm{PhCO}_{2} \mathrm{Ph}$ on the catalyst-ester complex. ${ }^{3}$

If $\mathrm{AlBr}_{4}{ }^{-}$removes AlBr_{3} from the catalyst-ester complex, or combines with uncomplexed aluminium bromide, it presumably gives $\mathrm{Al}_{2} \mathrm{Br}_{7}^{-}$, though we have not established this point. Dubois ${ }^{11}$ has shown the presence of $\mathrm{R}_{4} \stackrel{+}{\mathrm{N}} \mathrm{Al}_{2} \mathrm{Br}_{7}{ }^{-}(\mathrm{R}=\mathrm{Me}$, Et) and $\mathrm{R}_{4} \stackrel{+}{\mathrm{N}} \mathrm{AlBr}_{4}^{-}$in solutions of $\mathbf{R}_{4} \stackrel{+}{\mathrm{N}} \mathrm{Br}^{-}$and aluminium bromide in EtBr by conductivity measurements, and Akhrem ${ }^{12}$ has used ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ and ${ }^{17} \mathrm{O}$ NMR spectroscopy to determine the structure of $\mathrm{MeCOBr} \cdot 2 \mathrm{AlBr}_{3}$ in solution, proposing that it existed either as $\mathrm{MeC} \stackrel{+}{+} \mathrm{Al}_{2} \mathrm{Br}_{7}{ }^{-}$or $\mathrm{MeCOBr} \cdot \mathrm{Al}_{2} \mathrm{Br}_{6}$, depending on concentration. Earlier work, ${ }^{13}$ of course, showed the existence of $\mathrm{ArH}_{2}^{+} \mathrm{Al}_{2} \mathrm{Br}_{7}{ }^{-}$in Friedel-Crafts alkylation reaction mixtures of $\mathrm{ArH}, \mathrm{AlBr}_{3}$ and HBr . It thus seems entirely reasonable that $\mathrm{Al}_{2} \mathrm{Br}_{7}{ }^{-}$may exist in solution in PhCl . However, the absence of thermodynamic data does not allow us to decide whether $\mathrm{AlBr}_{4}{ }^{-}$strips AlBr_{3} from the catalyst-ester complex, or reacts with $\mathrm{Al}_{2} \mathrm{Br}_{6}$ in solution. Either process, of course, necessarily produces more free ester at the expense of the catalyst-ester complex.

We suggest, therefore, another process in which $\mathrm{AlBr}_{4}{ }^{-}$ interacts with the catalyst-ester complex as shown in Scheme 1, in a mechanism involving a cyclic transition state.

This process produces the ion-pair ($\mathrm{PhC} \stackrel{+}{\mathrm{O}} \cdot \mathrm{PhOA}_{\mathrm{A}} / \mathrm{Br}_{3}$), the intermediate in the second-stage reaction, ${ }^{3} \mathrm{AlBr}_{4}^{-}$effectively transferring AlBr_{3} from the carbonyl oxygen to the phenoxy oxygen of the ester (see Introduction). The AlBr_{4}^{-}is

Fig. 1 Plots of chemical shifts for the pairs of atoms $(a) 1$ and $2 ;(b) 1$ and $3 ;(c) 1$ and $4 ;(d) 2$ and $3 ;(e) 2$ and $4 ;$ and $(f) 3$ and 4. Symbols: \square, solution (i); + , solution (ii) and ${ }^{*}$, solution (iii).

Scheme 1
simultaneously regenerated, and can then react with another molecule of catalyst-ester complex. Approach of the $\mathrm{AlBr}_{4}{ }^{-}$ anion to the negatively polarised coordinated AlBr_{3} may appear unfavourable, but the concerted movement of electrons in the cyclic transition state makes this unimportant, and the positive polarisation of the carbonyl group to which the AlBr_{3} is initially coordinated will help to moderate any repulsive effect. Once the ion-pair is formed, it will react to give 2- and 4hydroxybenzophenone. Rearrangement does not occur at room temperature, ${ }^{14}$ at which all the spectroscopic measurements described above were made, so that at low temperatures, the activation energy for this process (or for the first-stage reaction ${ }^{3}$) is too high for rearrangement to proceed.

Is this proposal consistent with the established kinetics of the reaction? In Part $5,{ }^{1}$ we showed that the rearranging entity was $\left(\mathrm{PhCO}_{2} \mathrm{Ph} \cdot \mathrm{AlBr}_{3}\right)$, but that in the presence of added $\mathrm{AlBr}_{4}{ }^{-}$, the rate depended on $\left[\mathrm{AlBr}_{4}{ }^{-}\right]$in a manner reminiscent of Michaelis-Menten kinetics, implying an association complex of $\mathrm{AlBr}_{4}{ }^{-}$with $\left(\mathrm{PhCO}_{2} \mathrm{Ph} \cdot \mathrm{AlBr}_{3}\right)$. At low concentrations of $\mathrm{AlBr}_{4}{ }^{-}$, dependence of the reaction rate on $\left[\mathrm{AlBr}_{4}{ }^{-}\right.$] is strong, whereas at high concentrations of AlBr_{4}^{-}, the reaction rate is almost independent of $\left[\mathrm{AlBr}_{4}^{-}\right]$. The proposed mechanism (Scheme 1) certainly involves an association complex of AlBr_{4}^{-}with $\left(\mathrm{PhCO}_{2} \mathrm{Ph} \cdot \mathrm{AlBr}_{3}\right)$, albeit only a short-lived species. At very low concentrations of $\mathrm{AlBr}_{4}{ }^{-}$, the catalyst-ester complex will be present in great excess over $\mathrm{AlBr}_{4}{ }^{-}$(even at $110^{\circ} \mathrm{C}$, i.e. allowing for the increased dissociation of the catalyst-ester complex). Hence, at low concentrations of $\mathrm{AlBr}_{4}{ }^{-}$, there will be a strong dependence on $\left[\mathrm{AlBr}_{4}{ }^{-}\right.$], the limiting factor being availability of this ion. At higher concentrations of $\mathrm{AlBr}_{4}{ }^{-}$, the amount of this ion will no longer be such a limiting factor, especially since it converts the catalyst-ester complex back to free ester, thus reducing the relative amount of the complex. We have shown ${ }^{1}$ that less than 10% of the AlBr_{3} originally present in the $1: 1$ and $1: 1: 1$ reactions is converted to $\mathrm{AlBr}_{4}{ }^{-}$in 10 h .

Scheme 2

If our proposed mechanism is correct, it suggests that the firstand second-stage reactions can operate independently, since they involve attack by different species at different sites in the catalyst-ester complex (Scheme 2).

Experimental

Materials.-Anhydrous AlBr_{3}, chlorobenzene and (unlabel-
led) phenyl benzoate were all synthesised and/or purified as described previously. ${ }^{2} \mathrm{Bu}_{4} \stackrel{+}{\mathrm{N}} \mathrm{Br}^{-}$(Fluka), 2,6-dimethylphenol (BDH), 2,6-diisopropylphenol (Aldrich) and 2,6-dichlorophenol (Cambrian Chemicals) were all commercial products. The dimethyl- and dichloro-phenol were recrystallised from hexane before use. All three disubstituted phenols had mps close to the literature values. Two different batches of 22 atom- $\%$ [$\left.{ }^{17} \mathrm{O}\right]$ labelled $\mathrm{H}_{2} \mathrm{O}$ were used, the first from BOC, the second from Amersham International plc. The ${ }^{17} \mathrm{O}_{2}(21.9 \mathrm{atom}-\%)$ used also came from Amersham International plc.

The benzoates of the hindered phenols ($1.73 \times 10^{-2} \mathrm{~mol}$) were obtained using $\mathrm{PhCOCl}\left(2 \mathrm{~cm}^{3}, 1.73 \times 10^{-2} \mathrm{~mol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ containing pyridine ($2 \mathrm{~cm}^{3}$), the solutions being left overnight. A normal work-up procedure gave the esters, those of the dialkylphenols being recrystallised from EtOH , and that of the dichlorophenol from light petroleum (b.p. $40-60^{\circ} \mathrm{C}$). All three esters had m.p.s in agreement with the literature values, ${ }^{15-17}$ gave microanalytical data in accordance with calculated values, and showed the expected ${ }^{1} \mathrm{H}$ NMR spectroscopic data. Full details are given in ref. 5.
$\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph} .-\mathrm{Ph}^{17} \mathrm{OH}$ was prepared by the same route used for $\mathrm{Ph}^{18} \mathrm{OH},{ }^{3}$ i.e. by reaction of ${ }^{17} \mathrm{O}_{2}$ with PhMgBr . Two modifications of the earlier method were introduced. First, in the preparation of PhMgBr , the reflux period was reduced from 3 to $1.5 \mathrm{~h} .{ }^{3}$ This greatly reduced the formation of biphenyl as a byproduct. Second, in breaking the seal of the bulb containing ${ }^{17} \mathrm{O}_{2}$ (in this case, a $250 \mathrm{~cm}^{3}$ glass bulb), a pointed steel plunger, 2 inches long, was used, instead of the ball-bearing used earlier. When the seal was broken and the PhMgBr reacted with the oxygen, solid material formed, and blocked the entrance to the bulb, preventing the continued injection of the Grignard reagent solution. The pointed plunger was much more effective than the ball-bearing at dislodging blockages. $\mathrm{Ph}^{17} \mathrm{OH}$ was obtained in 73% yield.
$\mathrm{PhC}^{17} \mathrm{OCl}$ was prepared by allowing unlabelled PhCOCl to react with $\mathrm{H}_{2}{ }^{17} \mathrm{O}$, giving $\mathrm{PhCO}^{17} \mathrm{OH}$. This was dissolved in NaOH , the solution acidified with HCl , giving $\mathrm{PhCO}^{17} \mathrm{OH}$ and $\mathrm{PhC}^{17} \mathrm{OOH}$, and the acid re-converted to the acid chloride with SOCl_{2}, giving a mixture of $\mathrm{PhC}^{17} \mathrm{OCl}$ and unlabelled PhCOCl . $\mathrm{PhCOCl}\left(7.81 \mathrm{~g}, 5.56 \times 10^{-2} \mathrm{~mol}\right)$ was weighed into a $100 \mathrm{~cm}^{3}$ conical flask, and pyridine ($20 \mathrm{~cm}^{3}$) added. [$\left.{ }^{17} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~g}$, $5.49 \times 10^{-2} \mathrm{~mol}$) was added (using a syringe) and the $\left[{ }^{17} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ bottle washed with a little more pyridine $(2 \times 1$ cm^{3}), the washings being added to the flask, which was left overnight. Concentrated HCl was added, and the solution extracted with $\mathrm{Et}_{2} \mathrm{O}\left(5 \times 20 \mathrm{~cm}^{3}\right)$. The total extract was dried, and the solvent evaporated. The residual crude benzoic acid was dissolved in $\mathrm{NaOH}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{3}, 40 \mathrm{~cm}^{3}\right)$ and reprecipitated by addition of conc. HCl . The mixture was cooled, filtered and the acid dried in a desiccator before being refluxed with a large excess of $\mathrm{SOCl}_{2}\left(70 \mathrm{~cm}^{3}\right)$. The excess of SOCl_{2} was removed under reduced pressure, leaving the (labelled + unlabelled) benzoyl chloride ($7.70 \mathrm{~g}, 98.5 \%$ yield).

A solution of $\mathrm{Ph}^{17} \mathrm{OH}(1.534 \mathrm{~g}, 0.0163 \mathrm{~mol})$ in dry, distilled pyridine $\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise to the labelled benzoyl chloride ($2.29 \mathrm{~g}, 0.0163 \mathrm{~mol}$) with cooling in ice. The mixture was left overnight, then $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 50 \mathrm{~cm}^{3}\right)$ was added, and the solution extracted with $\mathrm{Et}_{2} \mathrm{O}\left(5 \times 30 \mathrm{~cm}^{3}\right)$. The ester was isolated in the normal way and recrystallised from EtOH. The $\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph}$ obtained $(1.638 \mathrm{~g}, 51 \%)$ melted at $70.5-$ $71^{\circ} \mathrm{C}$ [cf. lit., $\left.{ }^{18}\left(\mathrm{PhCO}_{2} \mathrm{Ph}\right) 71^{\circ} \mathrm{C}\right]$. It was found to be $>99 \%$ pure by GLC. Mass spectrometry showed high levels of incorporation of ${ }^{17} \mathrm{O}$ in both positions in the ester [a little over 9% at the carbonyl oxygen (theoretical value $\sim 11 \%$, and a little over 21% at the phenoxy oxygen (theoretical value 22%). Detailed calculations are given in ref. 5].

Analytical Work

FTIR Spectroscopy.-Spectra were recorded at room temperature on a Nicolet 7199 FTIR spectrometer. A metal-free cell was used, and solutions were introduced into the cell using a glass syringe. (Earlier work ${ }^{7}$ had shown that any contact of the AlBr_{3}-containing solutions with metal gave oddly-shaped artefact peaks in the IR spectra). The cell windows were BaF_{2}, and the path-length was 0.05 mm . Spectra were recorded in the range 800 or $900-1800 \mathrm{~cm}^{-1}$, and signals due to the solvent PhCl were subtracted. The techniques used in preparing the various solutions were those used for carrying out rearrangements, and have been described previously (refs. 1-3). A detailed account appears in ref. 5. Spectra of PhCl solutions of ester, $\mathrm{AlBr}_{3}+$ ester, and $\mathrm{AlBr}_{3}+$ ester $+\mathrm{AlBr}_{4}^{-}$were recorded for $\mathrm{PhCO}_{2} \mathrm{Ph}$ and the benzoates of the 2,6 -disubstituted phenols. In the case of $\mathrm{PhCO}_{2} \mathrm{Ph}$ itself, the AlBr_{3} : ester molar ratio was $1: 2$, and for AlBr_{3} :ester: AlBr_{4}^{-}was $1: 2: 1$. For the disubstituted esters, an AlBr_{3} :ester molar ratio of $1: 1$, and an AlBr_{3} : ester: AlBr_{4}^{-}molar ratio of $1: 1: 0.2$, was used (see Results and Discussion above).
${ }^{17}$ O NMR Spectroscopy.- ${ }^{17}$ O NMR spectra of samples in PhCl were recorded on a JEOL JNM GX400 FT NMR spectrometer. ${ }^{17}$ O-Enriched samples were submitted in 5 mm diameter tubes. Sealed glass capillaries filled with $\mathrm{D}_{2} \mathrm{O}$ were placed inside the NMR tubes with the samples, to act as both external lock ${ }^{19}$ and reference. ${ }^{8}$ Spectra were recorded of $\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph}, \quad \mathrm{AlBr}_{3}+\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph}$ (molar ratio 1:1), and $\mathrm{AlBr}_{3}+\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph}+\mathrm{AlBr}_{4}^{-}$(molar ratio 1:1:0.2). A molecular weight for the $\left[{ }^{17} \mathrm{O}_{2}\right] \mathrm{PhCO}_{2} \mathrm{Ph}$ was calculated using the molecular weight distribution determined by mass spectrometry. Solutions were prepared as for FTIR spectroscopy. A detailed account appears in ref. 5.
${ }^{13} \mathrm{C}$ NMR Spectroscopy.-- ${ }^{13} \mathrm{C}$ NMR spectra of solutions in PhCl were recorded on a JEOL JNM FX200 FT NMR spectrometer. Chemical shifts were measured relative to the metacarbon of PhCl :tetramethylsilane reacts with the AlBr_{3} solutions, and could not be used as internal standard. Spectra of $\mathrm{PhCO}_{2} \mathrm{Ph}, \mathrm{AlBr}_{3}+\mathrm{PhCO}_{2} \mathrm{Ph}$ (molar ratio 1:1), and $\mathrm{AlBr}_{3}+$ $\mathrm{PhCO}_{2} \mathrm{Ph}+\mathrm{AlBr}_{4}{ }^{-}$(molar ratio 1:1:0.2) were recorded.

Acknowledgements

We are very grateful to Dr. P. L. Goggin for recording the FTIR spectra; to Dr. M. Murray, Miss R. Silvester and Mr. A. J. Edwards for the ${ }^{17} \mathrm{O}$ and ${ }^{13} \mathrm{C}$ NMR spectra; to Dr. K. A. G. MacNeil for mass spectra; to Dr. G. W. Downs, BP Chemicals,

Grangemouth, for suggesting the use of hindered esters; and to Dr. J. S. Littler, for helpful discussions. We thank the SERC for a Research Studentship (to J. L. G.).

References

1 Part 5, I. M. Dawson, J. L. Gibson, L. S. Hart and C. R. Waddington, J. Chem. Soc., Perkin Trans. 2, 1989, 2133.

2 M. J. S. Dewar and L. S. Hart, Tetrahedron, 1970, 26, 973.
3 I. M. Dawson, L. S. Hart and J. S. Littler, J. Chem. Soc., Perkin Trans. 2, 1985, 1601.
4 C. P. Cheng, S. C. Lin and G-S. Shaw, J. Magn. Reson., 1986, 69, 58.

5 J. L. Gibson, Ph.D. Thesis, University of Bristol, 1990.
6 K. J. Blackall, B.Sc. Thesis, University of Bristol, 1990.
7 J. L. Gibson, B.Sc. Thesis, University of Bristol, 1986.
8 See, e.g., J.-P. Kintzinger, in NMR: Basic Principles and Progress 17. Oxygen-17 and Silicon-29, eds. P. Diehl, E. Fluck and R. Kosfeld, Springer-Verlag, Berlin and London, 1981, ch. 1, Oxygen NMR Characteristic Parameters and Applications; R. G. Kidd, Can. J. Chem., 1967, 45, 605; G. A. Olah, P. S. Iyer, G. K. Surya Prakash and V. V. Krishnamurthy, J. Org. Chem., 1984, 49, 4317; G. A. Olah, A. L. Berrier and G. K. Surya Prakash, J. Am. Chem. Soc., 1982, 104, 2373; R. T. C. Brownlee and D. J. Craik, J. Am. Chem. Soc., 1983, 105, 872; R. T. C. Brownlee, M. Sadek and D. J. Craik, Org. Magn. Reson., 1983, 21, 616.
9 (a) W. H. De Jeu, Mol. Phys., 1970, 18, 31; (b) C. Delseth and J.-P. Kintzinger, Helv. Chim. Acta, 1976, 59, 466.
10 C. Delseth, T. T.-T. Nguyên and J.-P. Kintzinger, Helv. Chim. Acta, 1980, 63, 498.
11 B. Dubois, P. Decock and B. Vandorpe, C.R. Hebd. Seances Acad. Sci. Paris, Ser. II, 1981, 292, 517.
12 I. S. Akhrem, A. V. Orlinkov, V. I. Bakhmutov, P. V. Petrovskii, T. I. Pekhk, E. T. Lippmaa and M. E. Vol'pin, Dokl. Akad. Nauk SSSR, 1985, 284, 627 (Engl. Transl., 289).
13 H. C. Brown and W. J. Wallace, J. Am. Chem. Soc., 1953, 75, 6268; H. C. Brown and H. Jungk, J. Am. Chem. Soc., 1955, 77, 5584; A. Manteghetti and A. Potier, Spectrochim. Acta, Part A, 1982, 38, 141. 14 L. S. Hart, Ph.D. Thesis, University of London, 1967.
15 R. A. Finnegan and J. J. Mattice, Tetrahedron, 1965, 21, 1015.
16 T. H. Coffield, A. H. Filbey, G. G. Ecke and A. J. Kolka, J. Am. Chem. Soc., 1957, 79, 5019.
17 Dictionary of Organic Compounds, executive ed. J. Buckingham, Chapman and Hall, New York, London, Toronto, 5th edn., 1982, vol. 2, p. 1767.
18 Handbook of Chemistry and Physics, ed. R. C. Weast, CRC Press, Inc., Florida, 65th edn., 1985.
19 C. Brevard and P. Granger, Handbook of High Resolution Multinuclear NMR, John Wiley and Sons, New York, London, Sydney, 1981, p. 38.

Paper 1/01477C
Received 27th March 1991 Accepted 3rd May 1991

